ISSN: 1019-7044
Volume 50, No. 1, June 2025
Published: November 2025
Pages: 181-203
Doi: http://doi.org/10.64204/BP1019-7044/50(1)/A20254
Mohd. Anisul Islam, Noyon Islam
This paper investigates the capabilities of query data for ‘company name’ to provide insights into the movement of bid-ask spread of stock, which is a basic component of transaction cost. The magnitude of bid-ask spread has an impact on measuring trading performance. Results from econometric techniques on a sample of 497 stocks reveal that the bid-ask spread of a stock is correlated with the search volume of the corresponding company name. Furthermore, we find that the stocks of more searched companies are likely to be traded at a lower bid-ask spread. However, if search is motivated by negative sentiment, the bid-ask spread will rise. This finding illustrates that the fluctuation of bid-ask spread can be anticipated by query data that will assist investors to make trading decisions prudently.
JEL Classification: G11, G12, G24
Keywords: Bid-Ask Spread , Query Data , Company Name , Negative Sentiment , Transaction Cost
References:
Ahmed, M. F., & Ali, M. B. (2013). Efficiency in Bangladesh stock market behavior: empirical evidence. Journal of Business Studies, 34(3), 79-103.
Aitken, M., & Frino, A. (1996). The determinants of market bid ask spreads on the australian stock exchange: Cross‐sectional analysis. Accounting & Finance, 36(1), 51-63. https://doi.org/10.1111/j.1467-629X.1996.tb00298.x
Baker, M., & Wurgler, J. (2007). Investor sentiment in the stock market. Journal of economic perspectives, 21(2), 129-151. https://doi.org/ 10.1257/ jep.21.2.129
Bank, M., Larch, M., & Peter, G. (2011). Google search volume and its influence on liquidity and returns of German stocks. Financial markets and portfolio management, 25, 239-264. https://doi.org/10.1007/s11408-011-0165-y
Barber, B. M., & Odean, T. (2008). All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors. The review of financial studies, 21(2), 785-818. https://doi.org/ 10.1093/ rfs/hhm079
Bijl, Laurens, Glenn Kringhaug, Peter Molnár, and Eirik Sandvik. "Google searches and stock returns." International Review of Financial Analysis 45 (2016): 150-156. https://doi.org/10.1016/j.irfa.2016.03.015
Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of computational science, 2(1), 1-8. https://doi.org/ 10.1016/j.jocs.2010.12.007
Brochado, A. (2020). Google search based sentiment indexes. IIMB Management Review, 32(3), 325-335. https://doi.org/10.1016/j.iimb.2019.10.015
Copeland, T. E., & Galai, D. (1983). Information effects on the bid‐ask spread. the Journal of Finance, 38(5), 1457-1469. https://doi.org/ 10.1111/j.1540-6261.1983.tb03834.x
Da, Z., Engelberg, J., & Gao, P. (2011). In search of attention. The journal of finance, 66(5), 1461-1499. https://doi.org/10.1111/j.1540-6261.2011. 01679.x
Da, Z., Engelberg, J., & Gao, P. (2015). The sum of all FEARS investor sentiment and asset prices. The Review of Financial Studies, 28(1), 1-32. https://doi.org/10.1093/rfs/hhu072
Ding, R., & Hou, W. (2015). Retail investor attention and stock liquidity. Journal of international financial markets, institutions and money, 37, 12-26. https://doi.org/10.1016/j.intfin.2015.04.001
Fang, L., & Peress, J. (2009). Media coverage and the cross‐section of stock returns. The journal of finance, 64(5), 2023-2052. https://doi.org/ 10.1111/ j.1540-6261.2009.01493.x
Fang, L., & Peress, J. (2009). Media coverage and the cross‐section of stock returns. The journal of finance, 64(5), 2023-2052. https://doi.org/10.1111/ j.1540-6261.2009.01493.x
Griffin, J. M., Hirschey, N. H., & Kelly, P. J. (2011). How important is the financial media in global markets?. The Review of Financial Studies, 24(12), 3941-3992. http://dx.doi.org/10.2307/41302005
He, Z., He, L., & Wen, F. (2019). Risk compensation and market returns: The role of investor sentiment in the stock market. Emerging Markets Finance and Trade, 55(3), 704-718. https://doi.org/10.1080/1540496X.2018.1460724
Huang, M. Y., Rojas, R. R., & Convery, P. D. (2020). Forecasting stock market movements using Google Trend searches. Empirical Economics, 59, 2821-2839. https://doi.org/10.1007/s00181-019-01725-1
Joseph, K., Wintoki, M. B., & Zhang, Z. (2011). Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search. International Journal of Forecasting, 27(4), 1116-1127. https://doi.org/10.1016/j.ijforecast.2010.11.001
Joseph, K., Wintoki, M. B., & Zhang, Z. (2011). Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search. International Journal of Forecasting, 27(4), 1116-1127. https://doi.org/10.1016/j.ijforecast.2010.11.001
Joseph, K., Wintoki, M. B., & Zhang, Z. (2011). Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search. International Journal of Forecasting, 27(4), 1116-1127. https://doi.org/10.1016/j.ijforecast.2010.11.001
Kostopoulos, D., Meyer, S., & Uhr, C. (2020). Google search volume and individual investor trading. Journal of Financial Markets, 49, 100544. https://doi.org/10.1016/j.finmar.2020.100544
Li, Q., Wang, T., Li, P., Liu, L., Gong, Q., & Chen, Y. (2014). The effect of news and public mood on stock movements. Information Sciences, 278, 826-840. https://doi.org/10.1016/j.ins.2014.03.096
Menyah, K., & Paudyal, K. (1996). The determinants and dynamics of bid‐ask spreads on the London Stock Exchange. Journal of Financial Research, 19(3), 377-394. https://doi.org/10.1111/j.1475-6803.1996. tb00 220.x
Mian, G. M., & Sankaraguruswamy, S. (2012). Investor sentiment and stock market response to earnings news. The Accounting Review, 87(4), 1357-1384. https://doi.org/10.2308/accr-50158
Moat, H. S., Curme, C., Avakian, A., Kenett, D. Y., Stanley, H. E., & Preis, T. (2013). Quantifying Wikipedia usage patterns before stock market moves. Scientific reports, 3(1), 1801. https://doi.org/10.1038/srep01801
Preis, T., Moat, H. S., & Stanley, H. E. (2013). Quantifying trading behavior in financial markets using Google Trends. Scientific reports, 3(1), 1-6. https://doi.org/10.1038/srep03578
Preis, T., Reith, D., & Stanley, H. E. (2010). Complex dynamics of our economic life on different scales: insights from search engine query data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1933), 5707-5719. https://doi.org/10.1098/ rsta.2010.0284
Shiller, R. J. (2003). From efficient markets theory to behavioral finance. Journal of economic perspectives, 17(1), 83-104. https://doi.org/10.1257/0895330 03321164967
Stoll, H. R. (2003). Market microstructure. In Handbook of the Economics of Finance (Vol. 1, pp. 553-604). Elsevier. https://doi.org/10.1016/S1574-01 02(03)01013-6
Swamy, V., & Dharani, M. (2019). Investor attention using the Google search volume index–impact on stock returns. Review of Behavioral Finance, 11(1), 56-70. https://doi.org/10.1108/RBF-04-2018-0033
Yang, S., Santillana, M., & Kou, S. C. (2015). Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences, 112(47), 14473-14478. https://doi.org/10.1073/ pnas.1515373112
Yang, S., Santillana, M., & Kou, S. C. (2015). Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences, 112(47), 14473-14478. https://doi.org/10.1073/ pnas.1515373112