Bank Parikrama: A Journal of Banking & Finance

ISSN: 1019-7044

Volume 50, No. 1, June 2025

Published: November 2025

Pages: 181-203

Doi: http://doi.org/10.64204/BP1019-7044/50(1)/A20254

Bid-Ask Spread in Financial Market: Insights from Search Engine Query Data

Mohd. Anisul Islam, Noyon Islam

Abstract

This paper investigates the capabilities of query data for ‘company name’ to provide insights into the movement of bid-ask spread of stock, which is a basic component of transaction cost. The magnitude of bid-ask spread has an impact on measuring trading performance. Results from econometric techniques on a sample of 497 stocks reveal that the bid-ask spread of a stock is correlated with the search volume of the corresponding company name. Furthermore, we find that the stocks of more searched companies are likely to be traded at a lower bid-ask spread. However, if search is motivated by negative sentiment, the bid-ask spread will rise. This finding illustrates that the fluctuation of bid-ask spread can be anticipated by query data that will assist investors to make trading decisions prudently.

JEL Classification: G11, G12, G24

Keywords: Bid-Ask Spread ,  Query Data ,  Company Name ,  Negative Sentiment ,  Transaction Cost

References:

Ahmed, M. F., & Ali, M. B. (2013). Efficiency in Bangladesh stock market behavior: empirical evidence. Journal of Business Studies34(3), 79-103.

Aitken, M., & Frino, A. (1996). The determinants of market bid ask spreads on the australian stock exchange: Cross‐sectional analysis. Accounting & Finance36(1), 51-63. https://doi.org/10.1111/j.1467-629X.1996.tb00298.x

Baker, M., & Wurgler, J. (2007). Investor sentiment in the stock market. Journal of economic perspectives21(2), 129-151. https://doi.org/ 10.1257/ jep.21.2.129

Bank, M., Larch, M., & Peter, G. (2011). Google search volume and its influence on liquidity and returns of German stocks. Financial markets and portfolio management25, 239-264. https://doi.org/10.1007/s11408-011-0165-y

Barber, B. M., & Odean, T. (2008). All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors. The review of financial studies21(2), 785-818. https://doi.org/ 10.1093/ rfs/hhm079

Bijl, Laurens, Glenn Kringhaug, Peter Molnár, and Eirik Sandvik. "Google searches and stock returns." International Review of Financial Analysis 45 (2016): 150-156. https://doi.org/10.1016/j.irfa.2016.03.015

Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of computational science2(1), 1-8. https://doi.org/ 10.1016/j.jocs.2010.12.007

Brochado, A. (2020). Google search based sentiment indexes. IIMB Management Review, 32(3), 325-335. https://doi.org/10.1016/j.iimb.2019.10.015

Copeland, T. E., & Galai, D. (1983). Information effects on the bid‐ask spread. the Journal of Finance38(5), 1457-1469. https://doi.org/ 10.1111/j.1540-6261.1983.tb03834.x

Da, Z., Engelberg, J., & Gao, P. (2011). In search of attention. The journal of finance66(5), 1461-1499. https://doi.org/10.1111/j.1540-6261.2011. 01679.x

Da, Z., Engelberg, J., & Gao, P. (2015). The sum of all FEARS investor sentiment and asset prices. The Review of Financial Studies28(1), 1-32. https://doi.org/10.1093/rfs/hhu072

Ding, R., & Hou, W. (2015). Retail investor attention and stock liquidity. Journal of international financial markets, institutions and money37, 12-26. https://doi.org/10.1016/j.intfin.2015.04.001

Fang, L., & Peress, J. (2009). Media coverage and the cross‐section of stock returns. The journal of finance64(5), 2023-2052. https://doi.org/ 10.1111/ j.1540-6261.2009.01493.x

Fang, L., & Peress, J. (2009). Media coverage and the cross‐section of stock returns. The journal of finance64(5), 2023-2052. https://doi.org/10.1111/ j.1540-6261.2009.01493.x

Griffin, J. M., Hirschey, N. H., & Kelly, P. J. (2011). How important is the financial media in global markets?. The Review of Financial Studies24(12), 3941-3992. http://dx.doi.org/10.2307/41302005

He, Z., He, L., & Wen, F. (2019). Risk compensation and market returns: The role of investor sentiment in the stock market. Emerging Markets Finance and Trade55(3), 704-718. https://doi.org/10.1080/1540496X.2018.1460724

Huang, M. Y., Rojas, R. R., & Convery, P. D. (2020). Forecasting stock market movements using Google Trend searches. Empirical Economics59, 2821-2839. https://doi.org/10.1007/s00181-019-01725-1

Joseph, K., Wintoki, M. B., & Zhang, Z. (2011). Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search. International Journal of Forecasting27(4), 1116-1127. https://doi.org/10.1016/j.ijforecast.2010.11.001

Joseph, K., Wintoki, M. B., & Zhang, Z. (2011). Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search. International Journal of Forecasting27(4), 1116-1127. https://doi.org/10.1016/j.ijforecast.2010.11.001

Joseph, K., Wintoki, M. B., & Zhang, Z. (2011). Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search. International Journal of Forecasting27(4), 1116-1127. https://doi.org/10.1016/j.ijforecast.2010.11.001

Kostopoulos, D., Meyer, S., & Uhr, C. (2020). Google search volume and individual investor trading. Journal of Financial Markets, 49, 100544. https://doi.org/10.1016/j.finmar.2020.100544

Li, Q., Wang, T., Li, P., Liu, L., Gong, Q., & Chen, Y. (2014). The effect of news and public mood on stock movements. Information Sciences278, 826-840. https://doi.org/10.1016/j.ins.2014.03.096

Menyah, K., & Paudyal, K. (1996). The determinants and dynamics of bid‐ask spreads on the London Stock Exchange. Journal of Financial Research19(3), 377-394. https://doi.org/10.1111/j.1475-6803.1996. tb00 220.x

Mian, G. M., & Sankaraguruswamy, S. (2012). Investor sentiment and stock market response to earnings news. The Accounting Review87(4), 1357-1384. https://doi.org/10.2308/accr-50158

Moat, H. S., Curme, C., Avakian, A., Kenett, D. Y., Stanley, H. E., & Preis, T. (2013). Quantifying Wikipedia usage patterns before stock market moves. Scientific reports3(1), 1801. https://doi.org/10.1038/srep01801

Preis, T., Moat, H. S., & Stanley, H. E. (2013). Quantifying trading behavior in financial markets using Google Trends. Scientific reports3(1), 1-6. https://doi.org/10.1038/srep03578

Preis, T., Reith, D., & Stanley, H. E. (2010). Complex dynamics of our economic life on different scales: insights from search engine query data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences368(1933), 5707-5719. https://doi.org/10.1098/ rsta.2010.0284

Shiller, R. J. (2003). From efficient markets theory to behavioral finance. Journal of economic perspectives17(1), 83-104. https://doi.org/10.1257/0895330 03321164967

Stoll, H. R. (2003). Market microstructure. In Handbook of the Economics of Finance (Vol. 1, pp. 553-604). Elsevier. https://doi.org/10.1016/S1574-01 02(03)01013-6

Swamy, V., & Dharani, M. (2019). Investor attention using the Google search volume index–impact on stock returns. Review of Behavioral Finance11(1), 56-70. https://doi.org/10.1108/RBF-04-2018-0033

Yang, S., Santillana, M., & Kou, S. C. (2015). Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences112(47), 14473-14478. https://doi.org/10.1073/ pnas.1515373112

Yang, S., Santillana, M., & Kou, S. C. (2015). Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences112(47), 14473-14478. https://doi.org/10.1073/ pnas.1515373112